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Summary

In this paper, we consider the problem of estimation of dispersion

effects of factors in replicated factorial experiments under a general

dispersion model. We also characterize the arrays so that the estimation

of dispersion effects is possible. The problem considered in this paper

arises in quality control studies and the methodologies are applicable to

industrial experiments.
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1. Introduction

We consider a 2m factorial experiment under a completely randomized

design. The runs are denoted by t' - (till...,t.iu***,tm) where t1 u is

the level of the factor u in the run i, t u = 0,1; u - 1,...,m;

i = 1,...,n. Let T (nxm) be a matrix whose ith row is t', i - 1,...,n.

The matrix T is called the array (or the design) for the experiment. We

take r (D 1) observations for the ith (i - 1,...,n) run of the experi-

ment. The experiment just described is very common in quality control

studies (see Taguchi and Wu 1985) where a major goal is to evaluate the

sensitivity of the manufacturing process to noise. The runs t'

i = 1,...,n, in T are called the level combinations of m control

factors. An important problem is to find an optimum combination of

levels of control factors in view of reducing the process variability due

to noise factors. A list of noise factors likely to affect the process

variability is first made. Various level combinations of noise factors

that provide a good representation of noise are then selected. For the

Ith run t, we collect ri observations corresponding to r1 level combina-

tions of noise factors. The ri observations for a run in T are called ri

replicated observations. The variability in the ri replicated observa-

tions for the ith run t' is attributed to the process variability due to

noise in the experiment.

Let Yij be the jth observation on the ith run t in T,

J =l,..,r, i=1,...,n. We denote =(Yll,...,ylI ;...;Ynl,...Ynr .
1r n

There are N - r1+...+rn observations in y. The model for the experiment

is
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E(Z) - XS, (1)

V() - E, (2)

where X(Nxp) is a known matrix that depends on the array T, 6(pxl) is a

vector of factorial effects considered in the experiment. The matrix Z

is an unknown diagonal matrix where the diagonal elements for all obser-

vations on t - (t- .''t ) are equal to a= 22(t, ) .

The parameters o2(t i,...,tiu 1,...,Itim) are called the dispersions of

the factor u(u - 1,...,m) at level 1. The parameters a2 (til,...,tiu

O,...,ti. ) are called the dispersions of the factor u(u - 1,...,m) at

level 0. We are interested in comparing the dispersions at level I with

the dispersions at level 0 for every factor. For this purpose, we define

the dispersion effect of the factor u(u = l,...,m) as

Ec(til,...,tiu - l,...,tim)o 2 (tii,...,tiu - 1,...,tim)

-Zd(tiL,--.,tiu 0,...,tim)c 2(til,...,tiu iO,...,t 3m), (3)

where c(til,...,t1 u - ,...,tfm) and d(tii,...,tiu =O,...,tfm are known

constants with Zcft i,...,tiu ' 1...'t ) - Zd(t.... im,

- 1. The dispersion effect is a contrast of the dispersions at level I

and level 0. If the dispersion effect is greater than 0, we then prefer

level 0 over level I of the factor. If the dispersion effect is less

than 0, we then prefer level 1 over level 0. If the dispersion effect

is zero then levels I and 0 are equally preferable. Notice that the

preference of one level over the other level depends on the dispersion

effect considered or in other words, on the values of c's and d's. The

linear functions of dispersion effects of the form (3) are used in

measuring how the dispersion effect of one factor varies at different

levels of the other factors [see Box and Meyer (1986), Srivastava
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(1987)]. In this paper we consider the problem of estimating meaningful

dispersion effects of the factors. We also characterize arrays so that

the estimation of meaningful dispersion effects is possible. Although in

(3) we use the contrast of level I and level 0 dispersions for the

dispersion effect, one may also take the ratio of two dispersions

considered (see Box and Meyer (1986)). The use of any of these

definitions will however give the same conclusion since each of them

compares the dispersions at level I and level 0. We assume throughout

the paper that for the fitted model to the data there is no significant

lack of fit.

The dispersion model and dispersion effects are considered in the

work of Taguchi (see Taguchi and Wu 1985), Box (see Box and Meyer 1986),

Kacker and Shoemaker (1986), Phadke (1986), Ghosh (1987), Srivastava

(1987), Nair and Pregibon (1988). This paper makes a further

contribution to this area of research.

2. Estimation of Dispersion Effects.

We choose a factor out of m factors and present estimators of some

meaningful dispersion effects of the chosen factor. For clarity, we do

not introduce any notation for the chosen factor. We define the

following indicator variable for i - 1,...,n, so that it is possible to

identify the runs at which the factor appears at level 1 and level 0,

respectively:

I Iif the level of the factor in the ith run is 1,

0 if the level of the factor in the ith run is 0.

A meaningful dispersion effect of the form (3) is



/

-5-

n n

2 2 r- Ii (4)ja(t,
a2(1) _ (0) = t_1 - (4)

n n

i-i ifil

The dispersion effect (4) is the difference between the average dis-

persions at level 1 and level 0 of the chosen factor. Let yi be the

mean of all observations on the ith run, i = 1,...,n. The sum of squares

of pure error is

n ri ft ri n ri

SSPE = - E (Yij - 1)2 iYij- y) 2 + - i)2.
im - 1i ifilj =1 imj =1

We now write

n ri
E r 6 i(yij - i)2

S£ (() 
-ij

n

i-l

n r i
E (1-6 1) (%i _ i 1)2

s2(0) = i~ij-i (5)
l n

z1(1-6i)(r i  -1)

It can be seen that E (S2(1) _ S2(O)) .02(l) _ 02(0). Thus S2(1)

S 2(0) is an unbiased estimator of a 2(1) - a 2(0).

It is important to estimate the dispersion effect which is a simple

contrast of dispersions at levels 1 and 0, or in other words, to estimate

a02(t ,.o.,tu I, 1, tu+l,...,tm) -0a2(tl,...,tu_l, 0, tu+l,...,tm) for a

(tl,...,t u- t u+l,...,t u ). This i. possible if both runs (tl,...tu-l,

1, tu+ ,...,t ) and (tl,...,tu-l, 0, tu+,....,tm) appear as rows in T.

Suppose that both runs are present in T and they appear in the rows i

K1
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of T. The unbiased estimator of the parameter of interest a ) 1
2

a2 ~2  is

ri  rir - )2 r2( _ )2

j-1 1 1 j=1 2 2 (6)(r, 1 ) T _riz 2 1~7~iT

Suppose that the runs (t ,...,tu , 1, ,...,tl and

0, t, also appear in the rows i3 and i4 of T. We then un-

biasedly estimate the dispersion effect o2t3 - o2 ,tY ). The linear
341[02 .i 1 )  o2L )

functions of the dispersion effects [- ti

2 1 1 2

+ 4 2 2 2t

a 2w4 )] are very important in terms of the "main effects" and the

"interactions" considered in Box and Meyer (1986), Srivastava (1987).

Note that the first linear function is in the form (3) and is thus again

a dispersion effect of the factor chosen. The second linear function is

not of the form (3) but a contrast of two dispersion effects of the form

(3). There is a possibility for an array T that the unbiased estimation

of a2(i'I) - a2(t'i2) is not at all possible for any (tl,...,tu_1 ,

tu+l,...,tm) but the unbiased estimation of a2(1) - a2(0) is still pos-

sible. This however is not a desirable situation and the corresponding

ing array T is not well chosen. In section 3 we discuss this issue in

detail.

We denote 4 as the vector of observations corresponding to the runs

with the chosen factor at level u, u = 1,0. Notice that y consists of

11 and O. Let Xu be the submatrix of X corresponding to ju, Eu be the

submatrix of E corresponding to Zu u be the ordinary least squares

fitted values for Yu. We have ^.- Xu(X'X)- X'y, u = 1,0. We denote
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Y - rup Rank r - V and VuS (u) - z'r'lry, u 1,0. Thus VuS (u)u uu

is the sum of squares of the ordinary least squares residuals at level u

of the chosen factor.

Theorem 1. We have for u - 1,0,

a. E(V S2(u))- Trace (rur' uru r + ruril-u)>(lu_)r(lu)ru),

b. E(VuS2(u)) - Trace ruruZururl, if and only if rur(l_u) - 0, i.e.,

r r' = 0.
1 0

Proof. Since we have assumed no significant lack of fit for the fitted

model, we get for u - 1,0, E(Y'r'ruy) - Trace rtruE = Trace ruE r'. It

can be be seen that the submatrix of r corresponding to ZU and Y(1-u)

are r r' and r r' Thus we have r r' - r r' E r'
u u (Uil-U),U u u uU

+ r r'l_u)E(l_u)r(l_u)r' . Hence the part a of Theorem I is true. Since

Trace ru r'l_u)F(_u)r(l_u) r' is the sum of squares of all elements in
urlu (1-Y(- u) anuteroeE /

r r' 12 and furthermore E112  Is a diagonal matrix with all
u (u)(-u) (1-u)

diagonal elements positive, the part b of Theorem 1 is true. This

completes the proof of the theorem.

It follows from Theorem 1 that in case r1 r6 - 0, the unbiased estimator

of the dispersion effect

Trace r 1r'E rlr' Trace r rE r r'
- 0 (7)

Trace r rV Trace r rot
11 00

is (V 1)/Trace rlr') - (VoS2(0)/Trace r0 r'). The dispersion effect

(7) is of the form (3).

When rirb * 0, two vectors of residuals rly and ro at levels 1 and

0 of the factor are correlated under the model (1-2). We present a

vector r(_u)ay of "adjusted residuals" at level (1-u) of the factor,
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adjusted w.r.t. ruy Cu -1,0) so that r0ay and r~yare uncorrelated

under (1-2). Let r ul(V uxN) be a submnatrix of r u so that Rank rul -=

u -1,0. We write for u -1,0,

r(1-)a = r ,u(I - r' (rlru )1 rul- (8)

It can be seen that rr' - 0Qand hence rur' - It can be(l-u)a u(1-u)a - 0

checked that Rank r(l,.u)a ' ((N-p) - VU) =V(1.-.u)a (say). We have for

u = 1,0,

r(_uaX, (,u)I- rullrulrul) rui) r(_)y(i_)* (9)

Thus for u - 1,0, r (1 )a depends on y only through Xo<1) and, more-

over, Cov(roay, r1ay) , 0, i.e., they are uncorrelated under (1-2). Let

r (1 1be a submatrix of r 1 (I - r' (r1 r'1 )'rl)r1,_) with rank

V (-ua'u = 1,0. We now have the sum of squares of the set of linear

functions r uay- [see Scheff. 1959] as

SS(r azu) M fri Iru rV ]-'ruli (10)

with d.f. V ua' u - 1,0. We define for u = 1,0,

It can be seen that for u -1,0,

E[iVu 52 (u)] - Trace(ruar'ai)'ruaiur'ai (12)

Thus the unbiased estimator of the dispersion effect

Trace (riairjaiVr aEirja Trace (roairaifr~ Eor 0 1

ia V0l ,a atO (13)

is S 2 (1) _ S2a (0). Again, the dispersion effect (13) is of the form

(3).
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3. Characterization of Arrays.

In this section we observe that for some arrays it may not be

possible to estimate unbiasedly both a2 (til,...,tiu , 1,...,tim) and

a2(t it, .•.,tiu ,...,ti.) for any

We present the characterizations of the arrays so that the unbiased

estimation of both a2(til,...,tiu = 1,...,tim) and

2 = O...t 1 ) are possible for at least one

(til,•..ti(ul),ti(u+l),•.•,tim) and for every u in {1,...,m}.

3.1. Orthogonal Arrays.

We first consider the orthogonal array T (nxm) whose rows

L!1 i = 1,...,n, satisfy

At. = c over GF(2), (14)

where A (sxm) is a known matrix of rank s and with two distinct elements

0 and 1, c (sxl) is a known vector with at most two distinct elements 0

and 1, GF(2) is the Galois Field with two elements 0 and 1. We have

n = 2m
-s . Such an orthogonal array is called a type-A orthogonal array

(see Srivastava and Chopra 1973). We write the matrix A in (14) as A =

[:l,*2,••.,an], where au(Sxl) is the uth (u = 1,...,m) column of A.

Theorem 2. Consider a run t' - (t,...',t u 1,tutu+1 ...',tmI of the type-

A orthogonal array T. Then o2(tl,...,t ul,tu - 1, t+..,tM) and

a2 (tl...,t u-, tu - u,. 0, t+ 1 ' .,tM) are both unbiasedly estimable if and

only if the uth column of A, i.e., a is a null vector.

Proof. We denote t'j) (t1 ,...,t t u  1, tu+...,tm) and t'(0) =

- 0, t+ ,...,t ). We have t(I) + t0) = e over GF(2),

where e is the vector with the uth element unity and the other elements-=u

are zero. We can estimate both a2 (L 1)) and a2(to) if and only if both
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and t appear as rows in T. (We know that one of them is already

in T.) If both ti and '0) are in T then we have At( 1) = At
-t-(1) -40) ( 1)- A(0)

We get At + At0= Ae , i.e., c + c = a . But, c + c = 2c = 0 over
-(1) -(0) -U -U --

GF(2). Thus the 'only if' part is true. The 'if' part is trivial. This

completes the proof.

We want to estimate o2(.L)) and a2 (tO)) for at least one (tl,...,t

tu+l,...,tM) and for every factor. It follows from Theorem 2 that this

is possible if and only if the matrix A in (14) is a null matrix. Then

the type-A orthogonal array T does not exist. We therefore conclude that

the type-A orthogonal arrays are not useful in the unbiased estimation of

the dispersion effects of the type a2(.L )) - a2(t0)) for every factor

out of m factors. Although the type-A orthogonal arrays are widely used

in quality control studies, we thus observe a serious drawback of such

arrays.

We now consider the orthogonal array T (nxm) whose rows t',

i - 1,...,n, are solutions of

Ati - over GF(2), k = 1,...,f (15)

where A (sxm) and E (sxl) are known as in (14), f is also known. We

have n - f 2m -s . Such an orthogonal array is called a type-B orthogonal

array (see Srivastava and Chopra 1973).

Example 1. Consider a 25 factorial experiment with 8 runs which are rows

of the matrix T (8x5). We take

x 1 +x 2

Ax - x3 + x4  • (16)

x2 + x4 + x5

Thus s = 3. We also take
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I - , 2 =

Thus f - 2. The matrix T is given below.

1 0 0 0 0

0 0 1 0 0

0 1 0 0 1

1 1 1 0 1

T .(17)

1 0 1 1 1

0 0 0 1 1

0 i ' I 0

1 1 0 1 0

The matrix T in (17) is a type-B orthogonal array of strength 2. We have

n = f 2m
-s - 2 25- 3 = 8. Using this array we are able to estimate ortho-

gonally all main effects under the assumption that 2-factor and higher

order interactions are all zero (Resolution III or Main Effect Plan).

Theorem 3. Consider a run t' W (tl,''',t u-,t utu+l,''',t m ) of the type
2tyt

B orthogonal array T satisfying (15). Then a tM,...,t u  ,

a 2(t,) and a2(tl,...,tu = O,...,t) W 2 (t_.)) are both unbiasedly

estimable if and only if the uth (u 1 1,...,m) column a of A in (15) is

a .i + cl' for k,k' in {l,...,f}.

Proof. We have L(I) + t- e over GF(2). Thus At + At - Ae
-1 -(0) -u -(1) -(0) -ii

a . Now if t and t are in T, we take At C c and At 2 . - "

Hence au - ck + S,,,. Suppose now that a' - Ek + k,. We have to show

that both t(1 ) and -0) are in T. We know that one of L(,) and L(o) is

already in T depending whether the uth element t in t is equal to I or
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0. Assuming t(l) is in T, we show that t(0) is also in T. It can be

seen that

At(O) - AI-u - - jk - =k"

Thus 40) is also in T. The rest is clear. This completes that proof.

We observe that if a type-B orthogonal array satisfies the condition of

Theorem 3, then the type-B orthogonal array whose runs are solutions of

A ti - I - -k' k - 1,...,f, i = 1,...,n, j' (Ii,...1), also satisfies

the condition of Theorem 3.

Example 2. We again consider the Example 1. The matrix A is given

below.

A 0 1 10L [0 1 0 1 1*
Note that none of the columns in A can be expressed as the sum of c1 and

L 2 . Thus for the type-B orthogonal array T in (17), the condition in

Theorem 3 does not hold. We now consider a 2 5 factorial experiment with

16 runs. We take Ax as in (16), f = 4, cl and 22 as in Example 1 and

The matrix T (16x5) consists of all runs in (17) and the following 8

additional runs.
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0 0 0 0 1

0 0 0 0 0

1 1 0 0 0

l 1 0 0 1

0 0 1 1 0

0 0 I I

1 1 1 1 0

The matrix T (16x5) is a type-B orthogonal array of strength I but not of

strength 2. However, it is nearly an orthogonal array of strength 2.

The condition of Theorem 3 holds for T (16x5). Hence a2 (4)) and

a2[ti0)) are both unbiasedly estimable for a (tl,...,tu_,,tu...,t

and for every chosen factor. We thus observe that we need more runs in

the array to satisfy the condition of Theorem 3 than to satisfy the con-

dition for the orthogonal array of strength 2. We need even more than 16

runs to satisfy both the condition of Theorem 3 and the condition for the

orthogonal array of strength 2.

3.2 Balanced Arrays (B-arrays) of Full Strength.

We now consider a B-array T (nxm) of full strength with n distinct

runs (see Srivastava and Chopra 1973). We first describe this B-array.

Let Si be the set of all (lxm) vectors having i elements equal to 1 and

the other (m-i) elements equal to 0, 1 - 0,1,...,m. The sets Si.

i 0, 1,...,m, appear as rows in T with frequencies A,, where

A 0 or I, i - 0, l,...,m. Clearly the number of vectors in Si is

n

and n - E

iw0
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Theorem 4. Consider a run t' = tl...tu-l,tuttu+l,...,tm) of a B-array

of full strength. Suppose that 1 is appearing w times and 0 is appearing

(m-w) times in t'. Then o2 1 ,...,tu = 1,...,tM) = o2 (t1)) and

at 1  '''...,tuW O,...,t = 0'' 2('t) are both unbiasedly estimable if and

only if the runs in S w and Sw+x , where x = I if tu = 0 and x - -1 if

t = 1, appear as rows in T.U

Proof. Suppose t - t Then the runs in S appear as rows in T. It
-(1 w

now follows from the B-array of full strength that t(0) will appear as a

row in T if and only if the runs in Sw_ 1 appear as rows in T. The rest

is clear. This completes the proof.

When Sw and Sw+x , x - 1 or -1, are present in T, we can estimate un-

biasedly both G 
2 (t*,...,t* t* - i,t*+ 1, ...It* and

u-I' u u

t*= 0,t+l,...,t*) for every factor u(u = I,...,m) and for some
u ' u~ m

..t* t*). If the runs in T (nxm), n = I + m, are theu-, u~t+,..' '+mh

runs in S and S (or, equivalently, Sm and S M_) then T is a resolution

III plan and the condition of Theorem 4 holds. If the runs in T (nxm),

n = I + m + (M), are the runs in SO, SI and S2 (or, equivalently, S,

SM_1 and Sm- 2 ) then T is a resolution V plan and the condition of

Theorem 4 holds for every factor. In view of the unbiased estimation of

the dispersion effect a2(t, -2( B-arrays of full strength are

very good having smaller number of runs. The resolution IV plan where

the runs in T (nxm), n = 2 + 2m, are the runs in SO, Sm, S, and Sm_ 1 is

good in terms of estimating both location and dispersion effects. The

resolution V plus one plan where the runs in T (nxm), n = 2 + 2m + (M),
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are the runs in SO, Sm, S1. Sm-i and S2 (see Srivastava and Ghosh (1976))

is good in terms of estimating both location and dispersion effects.

4. Final Remarks

In the model (1-2) and throughout the paper, we present the

dispersions in the general form. A special dispersion model assumes the

additive form a2 (t ,...,tm) _ o(t )+...+a 2(tm). There are 2m dispersion

2 2
parameters GU(1) and %(0), u = 1,...,m under the additive model. The

additive form is implicitly assumed in the orthogonal array experimenta-

tions (see Taguchi and Wu 1985). The additivity in the orthogonal array

experimentations simplifies the situations. For example, we have for the

uth (u = 1,...,m) factor, a(1) - 2 (0)- 0a )-2( ) ( )

o (0). The strengths of the orthogonal arrays are assumed to be 2 oru

more. Under the additive model, the unbiased estimation of the dis-

2 2
persion effects (1) u = l,...,m, is always possible in the

orthogonal array experimentations.
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